If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.0048x^2-2.47x+300=0
a = 0.0048; b = -2.47; c = +300;
Δ = b2-4ac
Δ = -2.472-4·0.0048·300
Δ = 0.3409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2.47)-\sqrt{0.3409}}{2*0.0048}=\frac{2.47-\sqrt{0.3409}}{0.0096} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2.47)+\sqrt{0.3409}}{2*0.0048}=\frac{2.47+\sqrt{0.3409}}{0.0096} $
| 0.0048x^2-2.47x+320=0 | | 0.0048x^2-2.47x+380=0 | | 76=9x-2 | | 2x-14+3(x-11)=13 | | 30(6.6667+2.333y)+70y=200 | | -a+8=39 | | 0.6y+3=0.3y+6 | | 12h=48= | | 3x^2-21x-23=100 | | 18n+12=27n+ | | ⅓+5x=¾ | | -7.4+l=9.11 | | c=45+0.04c | | 7w+3=66 | | 36=6/7v | | y-(-9)=-16 | | t=3(50)-41 | | 5.8(x-1)=24x | | 17y-7=-52 | | -3(x-2)=-4 | | 17y-7=52 | | 10^2x=7 | | (5/2)x+(1/2)x=13(1/2)+(9/2)x | | 6x-18=3x-6 | | 13u-15u=16 | | -18y=30 | | 11x=27+2x | | 6y=4y+32 | | 50=0.5x^2-x+20 | | x+5x=4-4x+10 | | 4w+12w+9=81 | | 24-11y=145 |